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Percolation thresholds on elongated lattices
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‡ Australian Petroleum Cooperative Research Centre, University of New South Wales, Sydney,
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Received 7 September 1999

Abstract. We investigate the percolation thresholds of both random and invasion percolation
in two and three dimensions on elongated lattices; lattices with a geometry ofLd−1 × nL in d
dimensions, wheren denotes the aspect ratio of the lattice. Scaling laws for the threshold and
spanning cluster density for random percolation are derived and simulation confirms the behaviour.
A direct relationship between thresholds obtained for random percolation and invasion percolation
is given and verified numerically.

Important contributions to understanding two-phase flow observations in porous media and
rock have been made using percolation theory [1–3]. Random percolation (RP) is relevant to
two-phase displacement if the flow is very slow and the invading fluid is completely wetting.
Invasion percolation (IP) is relevant when the invading fluid is completely nonwetting. Both
variants of percolation have been used to explain the structure and the amounts of fluids in a
two-phase displacement at breakthrough. The fractal structure of the invading fluid paths have
been analysed and the properties of IP are believed to be consistent with RP. In spite of this the
spanning clusters are not precisely the same, and no relationship between the cluster density
at spanning in RP and the breakthrough threshold in IP is known. Estimates of IP thresholds
are neglected, particularly in three dimensions, due to the large computational effort required
when compared with RP.

In most studies of percolation theory a simple square or cubic geometry is considered.
In many applications one must consider systems with nonquadratic and noncubic geometries.
For example, in the petroleum industry, laboratory measurements (e.g., residual saturations,
capillary pressure) are performed on rock cores of high aspect ratio. These measurements are
then used as input to reservoir simulation models. The crucial parameter measured is the value
of the critical thresholds.

Using scaling arguments and small-scale numerical simulations, Monetti and Albano [4]
presented scaling laws for the percolation probability in an elongated geometry that depend
on the aspect ration of the lattice. In this paper we derive new scaling laws for percolation
properties of elongated lattices (ELs) in both two and three dimensions, and present simulation
data to confirm the theoretical results. We also derive relationships between thresholds
observed in RP and IP for ELs and verify the relationships numerically.

Using finite-size scaling arguments, Monetti and Albano assumed the expectation value
of the percolation threshold〈pc(n)(L)〉 ∝ L−1/νn−1/ν whereν is the critical exponent for the
correlation length. We define a lattice ind dimensions of sizeLd as a simple lattice (SL).
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Consider an EL consisting ofn Ld SLs linked together in series. The probabilityPn(p,L) that
an EL of aspect ration percolates belowp is given by the product of independent probabilities:
Pn(p,L) = {P(p,L)}n×{C(p,L)}n−1, whereP(p,L) is the probability of having a spanning
cluster on a SL atp, andC(p,L) is the connection probability that the spanning clusters of
two SLs are connected at the (d−1)-dimensional interface. We have measured the magnitude
of the connection probability via extensive simulations and found thatC(p,L) ' P(p,L) in
both two and three dimensions [5]. We therefore approximate the probability by

Pn(p,L) = [P(p,L)]2n−1. (1)

Assuming the distribution of percolation thresholds on a SL can be accurately described by a
distribution of the formce(−x

a) [6,7] wherex = (pc−〈pc(L)〉)/b, a, b, andc being constants,
we can write the probability of having a spanning cluster in a SL atpc < p as

P(p,L) = c
∫ p

0
e(−x

a) dpc = bc
∫ x

x0

e−x
a

dx (2)

with x = (p − 〈pc(L)〉)/b andx0 = −〈pc(L)〉/b. For largex, P(p,L) can be approximated
by

P(p,L) = 1− F(x)e(−(x)a) (3)

whereF(x) = bc
a
x(1−a) denotes an algebraic correction to the leading decay. Substituting

equation (3) into equation (1) we obtain the functionPn(p,L) which approaches a Heaviside
step function for largen. The position of the stepx[step] can be estimated fromPn(p,L) =
0.5, which after a Taylor expansion around 1/n = 0 gives

x[step] =
[
ln

(
n− 1

2

)
+ (1− a) ln x[step] + ln

2bc

a ln 2

] 1
a

. (4)

Neglecting the constants and the lnx term (lnx, ln 2bc
a ln 2 � ln n, n � 1

2) the expression
simplifies to the remarkable result

x[step] = [ln n]
1
a . (5)

Assuming[6,7] that the distribution of percolation thresholds is approximately Gaussian with
a standard deviationσ(L) (a = 2, b = √2σ(L), c = 1

b
√
π

) the expectation value of the

percolation threshold on an EL,pc(n)(L), is given by the simple prediction

〈pc(n)(L)〉 = 〈pc(L)〉 +
√

2σ(L)
√

ln n. (6)

Numerical results for random site percolation with free boundary conditions are given in
figure 1 illustrating then-dependent scaling of the percolation thresholds in three dimensions
for a range of 16< L < 80. Results in two dimensions show the same scaling behaviour.
The number of realizations for eachL was chosen to obtainp(n)c (L) to within a standard error
of 10−4. All the data appear to follow equation (6) closely and strongly deviate from the
prediction of Monetti and Albano forn > 4.

Considering then SLs of the EL independently, the local densityX of the percolating
cluster in each SL depends on the value of the percolation thresholdpc

(n)(L) of the EL and on
the percolation thresholdpc(L) of the SL. We can distinguish three regimes:

X ∝ L−β/ν [pc
(n)(L) = pc(L)] (7)

X ∝ (pc(n)(L)− pc(L))β [pc
(n)(L) > pc(L)] (8)

X ∝ pc(n)(L) [pc
(n)(L)� pc(L)] (9)

whereβ = 5
26 in two dimensions andβ = 0.41 in three dimensions. As shown in the previous

section,pc(n)(L) is expected to be larger thanpc(L), so all simple lattices other than the
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Figure 1. n-dependent scaling of the RP percolation threshold in three dimensions. From top to
bottom the curves describe lattices withL = 16, 41 and 80. The thick solid lines are predictions
of equation (1) (using a Gaussian fit of the percolation probability distribution of a SL), the dashed
lines are the prediction of equation (6) and dotted curves give the prediction of Monetti and Albano.

‘bottleneck’ sublattice are above their percolation threshold. Therefore, the densities of the
individual simple lattices are expected to scale according to either equation (8) or (9). Only
the bottleneck sublattice scales according to equation (7).

For finiten and largeL, pc(n)(L) is still close topc(L) and we expect most simple lattices
to follow scaling law equation (8). Using equation (6) we obtain for the densityXn(L) of the
EL

Xn(L) ∝ L−β/ν(ln n)β/2. (10)

Figure 2 gives then-dependent scaling behaviour of the density in three dimensions. The
number of realizations was chosen to obtain standard errors inXn of 10−3. In this case the
scaling relation given by equation (10) holds well over the range ofn values studied. Results
in two dimensions (not shown) are also consistent with equation (10).

At the breakthrough threshold for IP there is no analogue to the occupation probabilityp

in RP as there are no finite clusters. The breakthrough thresholdpb is therefore analogous to
the spanning cluster density atXn(L) in RP. We find that scaling similar to equation (10) for
pb is observed [5].

One can derive a relationship between the density of the spanning cluster in RP and the
breakthrough threshold in IP for ELs. In RP, the location of the bottleneck within the EL has
no influence on properties like the density. This, however, is no longer true in the case of IP. In
IP if the bottleneck lattice is located at theexit face of the EL, then RP and IP will produce the
same percolating cluster, as all sites withp < p

(1)
b will be filled, wherep(1)b is the breakthrough
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Figure 2. n-dependent scaling of the RP spanning cluster density in three dimensions. From top
to bottom the curves describe lattices withL = 16, 41 and 80. Solid lines are predictions of
equation (10).

threshold for the bottleneck lattice. However, if the bottleneck plane is located at some other
position, then for the case of IP one finds sites withp < p

(1)
b are occupied only up to the

position of the bottleneck lattice. Beyond that, there is no need to fill sites up top = p(1)b and
the density of the remainder of the lattice will be determined by a second bottleneck lattice,
with occupationpb(2) < p

(1)
b . Repeating the argument, this part of the lattice again fills up

sites withp 6 pb(2) up to the position of this second bottleneck, after which a third bottleneck
determines the occupation degree, etc.

In general, if the main bottleneck is located at a positioni, where 1< i 6 n, then the
densities up to positioni are the same for IP and RP. The remainder of the lattice, having size
n− i, fills up with a density corresponding to that of an EL with aspect ration− i. So the value
of the density using IP given the position of the bottleneck at locationi, denotedXIPn [i], can
be expressed as a weighted average of the expectation value of the density using RP,〈XRPn 〉
and the expectation value of the density using IP for a lattice with sizen− i, 〈XIPn−i〉:

XIPn [i] = 1

n
(i〈XRPn 〉 + (n− i)〈XIPn−i〉). (11)

The locationi of the bottleneck within the EL could be anywhere, with equal probability.
Considering an ensemble average over all possible locations of the bottleneck, we obtain, after
some algebraic manipulation [5], the following expression:

〈XIPn 〉 =
1

2n
{(n + 1)〈XRPn 〉 + 〈XRPn−1〉 + 〈XRPn−2〉 + · · · + 〈XRP1 〉} (12)
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where we assumeXIP1 = XRP1 . Replacing the summation by an integral, we have

〈XIPn 〉 =
1

2
〈XRPn 〉 +

1

2n

∫ n

i=1
〈XRPi 〉 di (13)

which provides for an easy conversion between densities obtained using RP versus IP.
Using the above equation it can be shown [5] that the expected difference between the

density obtained with RP and IP vanishes in the limit of largen as

〈XIPn 〉 − 〈XRPn 〉 ∝ n−1. (14)

IP simulations begin by assigning an uncorrelated random number to each site on the
lattice from an arbitrary distribution. Initially, the lattice is filled with the defending phase
and the invading phase occupies one edge or face of the lattice. At each step in the simulation
the site with the largest value on the interface between the invading and defending phases is
displaced by the invader. The breakthrough thresholdpb is defined when the invading phase
spans the lattice. As we are motivated by laboratory two-phase flow measurements on rock
cores we consider free boundary conditions and results reported are measured over the full
lattice. Again we consider thresholds along the direction of extension.

Figure 3 displays percolation results for then-dependent scaling of the percolation
threshold of ELs, both for RP and IP in three dimensions. Results on two-dimensional lattices
show the same behaviour. Also shown is the theoretical prediction of the IP results according to
equation (13), where the integral is solved numerically by interpolating the percolation results

Figure 3. n-dependent scaling of the percolation threshold for ELs for RP and for IP in three
dimensions. The theoretical prediction is obtained by numerically integrating equation (13) and
using percolation results for RP.
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for RP. From these data it is clear that the theoretically derived formula accurately predicts the
difference between RP and IP densities. It also shows the convergence of RP and IP results in
the limit of largen, as predicted by equation (14).
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